научно-популярное приложение к газете "Голос Армении"
Menu

МОЛЕКУЛЯРНЫЕ МАШИНЫ

Челнок

Нобелевскую премию по химии в 2016 году вручили за проектирование и синтез молекулярных машин. Что это такое и как это работает?

Все живое можно представить как мир молекулярных машин. Казалось бы, в микромире очень много случайного движения. И тем не менее молекулы движутся, цепляются друг за друга подобиями шестерней, сообщают друг другу движение, причем выполняют все эти действия с большой точностью.

Соваж и молекулярные замки

Еще в начале восьмидесятых французский химик Жан-Пьер Соваж решил выяснить, как работают молекулы с точки зрения механики, какие механизмы приводят их в движение. В 1985 году он описал устройство и механику молекулярных узлов, состоящих из макрогетероциклических молекул.

ПРЕДМЕТОМ ЕГО ИЗУЧЕНИЯ СТАЛИ "МОЛЕКУЛЫ-ЗАМКИ" - КАТЕНАНЫ. Они состоят из двух и более кольцевых молекул. В экспериментах Соваж использовал криптанды - сложные циклические молекулы, содержащие в цикле атомы, отличные от атомов углерода. Находясь рядом с криптандами, разветвленные молекулы катенанов выстраивались так, чтобы замкнуть кольцо вокруг фрагмента криптанда. В результате получались конструкции, напоминающие два звена цепи. Эти конструкции положили начало координационной химии; будущее было за созданием таких молекул, которые не только организовывались в предсказуемые пространственные структуры, но и двигались в их пределах.

Фрейзеру Стоддарту из Северо-западного университета в Ивастоне (США), пошедшему по стопам Саважа, удалось собрать из молекул относительно простое устройство, на основе которого работают многие современные молекулярные механизмы. Устройство предстваляло собой соединение из класса ротаксатанов.

Стоддарт - Соваж - ФерингаМОЛЕКУЛА РОТАКСАНА ВЫГЛЯДИТ КАК МУФТА, КОТОРАЯ ДВИЖЕТСЯ ВДОЛЬ ОСИ, концы которой увенчаны крупными навершиями. Эти навершия не дают муфте соскочить. На противоположных концах оси находятся группы атомов, которые способны связываться с "муфтой". Стоддарт установил, что "муфта" может перемещаться от одной такой группы к другой. Эта молекула и стала первым молекулярным челноком. В 1994 году Стоддарт изменил устройство своего шаттла: теперь на концах "оси" находились не одинаковые, а разные группы атомов. Изменяя кислотность раствора, в котором плавали молекулярные перевозчики, можно было управлять активностью каждой из них и целенаправленно заставлять муфту двигаться.

Машины Стоддарта строились на двух принципах, которые унаследовали все следующие поколения молекулярных машин. Первый из них гласит, что связь между подвижными частями машины или подвижной и не подвижной не должна иметь ковалентную природу. Ковалентные связи слишком сильные для того, чтобы их можно было легко разрывать и снова создавать. Вместо этого для движущихся частей машин используется электростатическое притяжение между частями молекул, имеющих полярные электрические моменты.

Второй принцип заключается в том, что "шаттлам" не должен быть нужен внешний источник энергии. Они получают энергию от броуновских столкновений с другими молекулами в растворе.

Свой механизм Стоддарт использовал для создания устройства хранения информации на основе сотен челноков. Пойманные в ловушку между кремниевым слоем и титановыми электродами, ротаксаны с помощью электричества перемещают "муфту" вперед и назад - получаются своеобразные молекулярные "счеты" 13 мкм длиной, способны хранить 160000 бит информации и настолько малы, что 100 гигабит с их помощью может поместиться на 1 квадратном сантиметре. Это сравнимо с технологиями записи данных, которые используются в современных жестких дисках.

Ферринга и молекулярные двигатели

В 1999 году наука о молекулярных машинах сделала еще один гигантский скачок вперед. На основе челноков Стоддарта голландский ученый Бен Ферринга создал первый в истории молекулярный мотор.

ОН ПРЕДСТАВЛЯЛ СОБОЙ ОДНУ КРУПНУЮ МОЛЕКУЛУ, СОДЕРЖАВШУЮ два одинаковых блока, соединенных двойной углерод-углеродной связью. Пока связь была цела, система находилась в равновесии, но ее легко можно было привести в движение лучом света, который способен частично разрушить двойную связь C-C. Когда связь нарушается, блоки начинают вращаться друг относительно друга. Особенно важно было то, что геометрия блоков позволяла им вращаться только в одном направлении. Пока работал источник энергии - света или тепла - мотор продолжал крутиться.Молекулярный полноприводный автомобиль

Ферринга пошел дальше и на основе своего мотора построил четырехколесный "наноавтомобиль" (!), способный "ехать" в заданном направлении под действием света.

Самым удивительным свойством молекулярных машин оказалось то, что они, как и их аналоги из макромира, способны перемещать объекты крупнее себя. Молекулярный моторчик Ферринги способен увезти на себе стеклянную чешуйку, масса которой в 10 000 раз превышает массу молекулы.

Как было отмечено во время объявления имен лауреатов Нобелевской премии, молекулярные механизмы во многом остаются игрушкой ума, не находя практического применения: их слишком сложно построить и еще сложнее заставить работать. Но фундаментальные открытия, стоящие за кажущейся простотой их конструкции, уже применяются в реальной технике.

Главная область применения молекулярных механизмов - адресная доставка лекарств. В июле 2015 года команда американских ученых разработала управляемое светом вещество - аналог известного лекарства от рака, комбретастина А-3. Комбретастин печально известен тем, что наряду с опухолями атакует и здоровые ткани. Залог его правильной работы - точная доставка к раковым клеткам. Управляемую светом молекулу, в которой азот-азотная связь рвется и заставляет молекулярные "педали" вращаться только под действием синего света, можно направлять в нужное врачам место площадью всего около 100 мкм2.

Анастасия ШАРТОГАШЕВА, Популярная механика

Опубликовано в Лаборатория
Прочитано 137 раз
Оцените материал
(0 голосов)

Оставить комментарий

Убедитесь, что вы вводите (*) необходимую информацию, где нужно
HTML-коды запрещены

Наверх